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Energies of [001] small angle grain boundaries

in aluminum

A. OTSUKI
Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan

Energies of symmetric [001] tilt and twist small angle grain boundaries in aluminum have
been examined as a function of misorientations. Boundary energies were evaluated relative
to solid/liquid interfacial energies by a dihedral angle method on surface grooves. Energies
of (100)s tilt boundaries with the Burgers vector of a[100] were rather smaller than those of
(110)s tilt boundaries with a/2[110]. Energies of twist boundaries at θ < 4◦ were slightly
larger than those of (110)s tilt boundaries. The energies were well explained as a function of
misorientations by the Read-Shockley type equation. The equation also correctly described
the difference in elastic energy factors between the (110)s tilt and twist boundaries.
However, the term b in the equation may take a constant value independent of the Burgers
vectors. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
The most acceptable structure model of small angle
grain boundaries is the dislocation model. Read and
Shockley [1] introduced the dislocation model for en-
ergies using the elastic theory. Boundary energies, γgb,
are described as a function of the misorientation, θ as,

γgb = E0θ (A0 − ln θ ), (1)

E0 = µb

4π (1 − ν)
, for tilt, E0 = µb

2π
, for twist.

E0 is the constant as the function of the elastic modu-
lus, µ, the magnitude, b, of the Burgers vector, b, and
Poisson ratio, ν. A0 is the constant as a function of
the core radius of boundary dislocations. Although the
Read-Shockley Equation 1 was originally introduced
for the elastic energies, boundary energies including
core energies may be described by the Read-Shockley
equation [2].

To examine the Read-Shockley model experimen-
tally, many examinations have been performed [3–5].
Energies of Al small angle boundaries were also well
expressed by the equation [6]. The equation means
that energies depend on the magnitude of the Burg-
ers vector of boundary dislocations. However, ener-
gies of Al [001](100)s tilt small angle boundaries with
the Burgers vector of a[100] were found to be smaller
than those of (110)s boundaries with the Burgers vec-
tor of a/2[110] [6–8]. (The expression (100)s or (110)s
boundaries mean that the boundaries are in a symmetri-
cal position between the (100) or (110) planes of crystal
1 and crystal 2.) These studies required further exam-
inations of small angle boundaries to check with the
Read-Shockley model.

In the present study, experimental results for ener-
gies of [001] tilt and twist small angle boundaries in
aluminum are reported. These boundaries allow us to

compare among energies with respect to elastic moduli
and the Burgers vector.

2. Experimental procedures
To examine boundaries with the desired misorien-
tations, bicrystals of 99.999% pure aluminum were
grown from the melt, using seed crystals. Bicrystals
were used in the deviation within 2◦ from the [001]
orientation. The misorientation angle is denoted by the
angle, θ , made by each [010] orientation. Thus, small
angle boundaries near θ = 0◦ indicate (100)s tilt small
angle boundaries, while boundaries near θ = 90◦ indi-
cate (110)s tilt small angle boundaries. Grain boundary
energies were obtained by measuring dihedral angles
of surface grooves at boundaries; the ratio of the grain
boundary energy, γgb, to the solid/liquid interfacial en-
ergy, 2γsl , is correlated with the dihedral angle, α, as
follows (Fig. 1),

γgb/2γsl = cos(α/2). (2)

This equation assumes that crystallographic anisotropy
in the γsl is negligible [9], since the anisotropy in sur-
face energy of aluminum was found to be less than
5% [10]. Also the grain boundary torque term is ne-
glected, because the boundaries did not migrate from a
position normal to solid/liquid interfaces. To form sur-
face grooves, aluminum specimens were wetted with
Sn-20 mass%Zn alloy, pre-heattreated at 673 K for
1 h, and then treated at 513 K for 2 days in a vac-
uum capsule. This two step heat treatment was done
to protect as much as possible the occurrence of the
grain boundary migration induced with the diffusion
of Zn atoms into aluminum boundaries from the melt
[11]. The equilibrium concentration of Zn in the Sn-
Zn liquid phase is 12.5%Zn at 513 K [12]. Indeed, the
Al(solid)/SnZn(liquid) interfacial energy depended on
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Figure 1 Interfacial energy balance at an intersection of solid/liquid in-
terfaces and a grain boundary.

the Zn concentration in the liquid metal [13]. The Zn
equilibrium concentration in the liquid phase was main-
tained using a high Zn concentration of the Sn20%Zn
alloy during the heat treatment. Consumed Zn in the liq-
uid phase diffusing into aluminum was supplied from
solid phase Zn in the Sn20Zn alloy. Aluminum has
solid solubility of about 10 mass.%Zn at 513 K [12].
Thus, the boundary energy measured in this experi-
ment referred to that of the Al-Zn alloy instead of

Figure 2 A boundary groove formed at an Al/Sn20%Zn interface.

Figure 3 Dihedral angle variation with θ , (a) 0–20◦(100)s tilt, (b) 70–90◦(110)s tilt and (c) twist boundaries.

pure Al. A typical shape of a boundary groove pro-
file formed at an aluminum(solid)/Sn20Zn(liquid) in-
terface after the heat treatment is shown in Fig. 2. The
grain boundary is traced by a broken line. The profile
of the solid(s)/liquid(l) interface was smooth and did
not show facetting. The obtained mean values of α are
shown together with 90% confidence limits using the
t-distribution in the statistics.

3. Results and discussion
Figs. 3a and b show the dependence of the experimen-
tally obtained dihedral angle α for the (100)s and (110)s

tilt boundaries on misorientation angles, respectively.
(Note that θ for (110)s tilt boundaries was marked from
90◦ to 70◦ indicating misorientations of their small an-
gle boundaries.) The scale on the right hand is marked
in the relative boundary energies γgb/2γsl = cos(α/2).
Boundary energies increased with increasing misorien-
tation. The energies of twist boundaries (Fig. 3c) were
slightly larger than those of (110)s tilt boundaries in the
range of θ < 4◦ and smaller than those of tilt bound-
aries in the range of θ > 4◦. A similar experimental re-
sult has also been reported in examinations using triple
junction geometry in aluminum by Yang et al. [5]. Scat-
tered data observed at coincidence boundaries in larger
θ , corresponding to energy cusps.

Since the Read-Shockley equation is described by
two factors of E0 and A0, the difference between the
energies of (100)s and (110)s tilt boundaries could not
be explained simply. To examine the effect of the E0
and A0 terms separately, Equation 1 is combined with
Equation 2 to use the dihedral angle measurements, as

γgb

2γslθ
= cos(α/2)

θ
= E0

2γsl
(A0 − ln θ )

= S0(A0 − ln θ ). (3)

Fig. 4 shows the relationship of the cos(α/2)/θ vs.
lnθ for the (110)s boundaries. (For these boundaries,
note that θs in both the terms of cos(α/2)/θ and lnθ

are substituted by θ ′ = 90◦–θ , because θ = 90◦ to
70◦ corresponds to misorientations of the small angle
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Figure 4 Read-Shockley analyses on energies of small angle bound-
aries, the solid line for (110)s and dotted line for (100)s tilt boundaries.

boundaries as seen in Fig. 3b.) The measurements of
the region of θ ′ = 3◦ to 10◦ are represented by a lin-
ear relation following Equation 3. This suggests that
the energies of small angle boundaries are described
by the Read-Shockley equation [1]. The dotted line in
Fig. 4 shows the (100)s boundaries. The slope of the
dotted line is smaller than that for (110)s tilt bound-
aries. Slopes and intersections on the lnθ axis in the
linear lines indicate the S0 = E0/2γsl and A0 values,
respectively. S0 and A0 values obtained using the least
squares estimation are summarized in Table I. Here,
data points regarded as energy cusps were eliminated
in the least squares estimation. S0 values of (100)s and
(110)s boundaries were 1.78 ± 0.09 and 2.07 ± 0.16,
respectively. In contrast, the A0 value for the (100)s

boundaries was rather larger than that for the (110)s

boundaries. Therefore, the lower boundary energies of
(100)s boundaries were due to the small E0 value, be-
cause the γsl may take a constant value independent of
surface orientation [10].

Fig. 5 shows the relationship of the cos(α/2)/θ vs.
lnθ for the twist boundaries. The measurements of the
region of θ = 2◦ to 10◦ were also represented by a
linear relationship following equation 3. The slope of
the solid line was larger than that of the dotted line
for the (110)s tilt boundaries. The measured S0 and A0

TABL E I Read-Shockley analyses

g.b. S0 = E0/2 γsl S0t /S0w A◦

Tilt (100)s 1.78 ± 0.09 0.70 0.36 ± 0.10
Tilt (110)s 2.07 ± 0.16 0.82 0.20 ± 0.17
Twist 2.53 ± 0.05 −0.25 ± 0.03

K ×1011 H ×1010 E0 γsl

g.b. b Nm−2 Nm−2 Ht /Hw (Jm−2) (mJm−2)

Tilt s a〈100〉 0.3473 0.2764 0.777 1.125 316
(100)s (∼ µ/(1-ν)) (K/4π ) ±10
Tilts a/2〈110〉 0.3621 0.2882 0.810 0.8296 200
(110)s (∼ µ/(1-ν)) (K/4π ) ±17
Twist a/2〈110〉 0.2235 0.3556 1.024 202
(001) (∼ µ) (K/2π ) ±6

Figure 5 Read-Shockley analyses on energies of small angle twist
boundaries, the solid line for twist and dotted line for (110)s tilt bound-
aries.

values were 2.53±0.05 and −0.25±0.03, respectively,
as shown in Table I.

3.1. Comparison between the energies of
(110)s tilt and twist boundaries

E0 is the energy factor dependent on the dislocation
structure according to the Read-Shockley equation.
The Burgers vector b for the (110)s boundaries in
aluminum was found to be a/2[110] from the disloca-
tion spacing in the direct observation by Shamsuzzoha
et al. [14]. (The quantity of “a” is the lattice constant.)
They also concluded that dislocations were 90◦ pure
edge dislocations. The Burgers vector of (001) twist
boundaries of aluminum was also observed to be
a/2〈110〉 by Wagner and Balluffi [15]. Because both
the Burgers vectors of (110)s tilt and (001) twist
boundaries were equal, the obtained ratio S0t/S0w

should represent the ratio of Ht/Hw = Kt/2Kw. K
is the energy factor for dislocations: Kt

∼= µ/(1-ν)
for tilt boundaries and Kw

∼= µ for twist boundaries.
K was calculated by Steed’s equation [16] using the
elastic constants of C11 = 0.9820, C12 = 0.5844 and
C44 = 0.2512 × 119 Nm−2 measured by Gerlich
and Fisher [17]. The effect of the elastic anisotropy
on the energy factor K was considered. S0t /S0w of
0.82 shown in Table I was in good agreement with
Ht (110)s /Hw = 0.81. This suggests that energies of Al
(110)s tilt and (001) twist small angle boundaries were
well explained by the Read-Shockley equation [1].

3.2. Comparison between the energies of
(100)s and (110)s tilt boundaries

On the (100)s boundaries, we obtained the value of
S0 = E0/2γsl of 1.78 ± 0.09 smaller than 2.07 ± 0.16
for (110)s boundaries as shown in Table I. Dislocations
in the (100)s boundaries were found to possess b =
a[100] from dislocation spacing by Liu and Balluffi
[18]. If the dislocations are pure 90◦ edge dislocations,
the energy factor Kt (100)s value is not so different from
Kt (110)s as shown in Table I. Thus, the E0 value of the
(100)s boundaries is expected to be

√
2 times larger than
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TABL E I I Core models for a[100] dislocations

decomposition K (value)
Model or dissociation Kd (eq.) ×1011 Nm−2

(a) no decomposition Ke1 0.3473
a[100] on (010)

(b) two edge dislocations 2 1
2 Ke2 0.3473

a/2[110] + a/2[110] on {110}
(c) partial dislocations 2 1

4 Ke1 0.1736
a/2[100] + a/2[100] on (010)

(d) 45◦ mixed dislocations 2 1
4 (Ke1 + Ks ) 0.2992

a/2[101] + a/2[101] on (010)

E0(b′ =
b2

d a /
√

2) E0/E0 γsl

Model bd ( b = a) (Jm−2) (110) (mJm−2)

(a) a a 0.7956 0.959 223
(b) a/

√
2 a/2 0.7956 0.959 223

(c) a/2 a/4 0.3978 0.480 112
(d) a/

√
2 a/2 0.7404 0.892 208

that of (110)s boundaries following the magnitudes of
the Burgers vectors of a[100] for (100)s and a/2[110]
for (110)s boundaries as shown in Table I. However,
the obtained E0t (100)s /E0w = 1.099 was much larger
than S0t (100)s /S0w = 0.70. For this reason, it seems
that the (100)s boundaries do not consist of 90◦ pure
edge dislocations.

The observation of dislocation cores of the (100)s

tilt boundaries has shown that the dislocations had an
elongated form with two separate cores [19, 20]. To
explain the elongated cores, the models proposed for
[001](100)s tilt boundaries are as follows;

(a) no decomposition, 90◦ pure edge dislocations
[21],

(b) decomposition into two a/2〈110〉 edge disloca-
tions [19, 21],

(c) dissociation into two a/2[100] pure edge dislo-
cations [22],

(d) decomposition into two a/2〈110〉 45◦ mixed dis-
locations [20],

(e) serration and dissociation [23].

Darby and Balluffi [23] observed a serrated dislo-
cation structure in Au [001](100)s tilt boundaries and
proposed model (e). However, the dislocations in Al
[001](100)s tilt boundaries were observed to be straight
by Liu and Balluffi [18]. For models from (a) to (d), cal-
culated K values are shown in Table II.

Here, Ke and Ks are the energy factors for edge and
screw dislocations, respectively and were calculated for
dislocations on each plane as shown in Table II [16] :
Ke1 = Ke2 = 0.3473 and Ks = 0.2512. The energy γgb

of boundaries consisting of decomposed dislocations
in aluminum may be described as similar to the Read-
Shockley equation (see Appendix I ), as

γgb = (Kd/4π )
(
b2

d/b
)
θ (A0 − ln θ )

= (Kd/4π )b′θ (A0 − ln θ ), (4)

where Kd is the energy factor for decomposed disloca-
tions, and b and bd are the magnitudes of the Burgers

vector of non-decomposed and decomposed disloca-
tions, respectively. In the case of b = a for b = a[100],
calculated b2

d/b were too small to explain the experi-
mental results except model (a), while E0 obtained from
model (a) was too large as mentioned above as shown
in Table II. Therefore, it is assumed that the term b in
equation 1 for (100)s may take a/

√
2 as same as that of

(110)s , because it seems that both S0 values were rather
similar. The term b in Equation 1 corresponds to the
term b′ = b2

d/b in Equation 4. Using b′ = a/
√

2, calcu-
lated K , E0 and γsl values were shown in Table II. The
ratio of E0/E0(110)s = 0.959 for models (a) and (b) was
larger than the ratio of S0(100)s /S0(110)s = 1.78/2.07
= 0.869. On the other hand, E0/E0(110)s = 0.892 value
for model (d) showed an approximately equal value of
S0(100)s /S0(100)s = 1.787/2.07 = 0.869. This suggests
that the boundary structure of (100)s tilt boundaries may
consist of 45◦ mixed dislocations shown by model (d).
To confirm this result, further examinations on the dis-
location core structure are desirable in future.

This conclusion was due to the assumption that the
term b in E0 took the same value as that of (110)s , cor-
responding to the nearest interatomic distance of fcc
crystals. Similar results were already found, in that the
misorientation dependence of � = 3 boundary energies
was explained by the term b corresponding to the mag-
nitude of a/2 〈110〉 independent of the Burgers vector of
secondary dislocations of b = 1/3〈111〉 for these bound-
aries [13]. In addition, Tsurekawa et al. [24] pointed out
that energies of small to large angle boundaries may
be described by the Read-Shockley type equation as a
function of the boundary dislocation density, b/D, in-
stead of θ , where D is the dislocation spacing. They
also found that the factor E0 may be constant indepen-
dent of the Burgers vectors. This suggests that small
angle boundaries consisting of dislocations with any
given Burgers vector show macroscopically equal elas-
tic strain fields independent of the Burgers vector. The
net Burgers vector, B, of boundary dislocations is given
by Frank’s formula for small angle boundaries [2]. If
boundaries consist of dislocations with Burgers vector
bi, B = �ni · bi, where ni is the number of disloca-
tions with Burgers vector bi. In the case of boundaries
consisting of one kind of dislocations, the net Burgers
vector B is only given by θ , B = 2 sin(θ /2) ∼ θ . There-
fore, in other words, small angle boundaries at any mis-
orientation θ show macroscopically equal elastic strain
fields independent of the Burgers vectors. In future, it
will be desirable to introduce a new model to describe
small angle boundary energies.

3.3. Evaluation of Al (solid)/Sn-Zn (liquid)
interfacial energies

To obtain absolute boundary energies of aluminum, the
γsl values are calculated by substituting E0 values into
the S◦ values. For this purpose, the value of the term
b in E0 must be determined appropriately. For (110)s

tilt and twist boundaries, assuming b = a/
√

2 (a =
0.4071 nm) at 513 K, γsl values were estimated to be
200–202 m−2 as shown in Table I. Using the γsl value,
absolute energies of Al [001] boundaries were given
by substituting this value in the right hand vertical axis
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in Fig. 3. This figure shows that the energies of high
angle tilt boundaries are roughly 360–370 mJ·m−2 at
513 K. Empirically, boundary energies are well known
to be roughly equal to one third of the surface energy
of a solid phase itself. The surface energy of Al has
been measured to be 1100 mJ·m−2 [25] at 513 K, and
the γgb was estimated to be 370 mJ·m−2, agreeing well
with this observation. On the other hand, energies of
twist boundaries are about 310 m−2 and smaller than
those of tilt boundaries. In addition, in experiments for
the temperature dependence of boundary energies in
aluminum, the γsl value estimated using b = a/

√
2 was

extrapolated at the melting point of Al and showed good
agreement with pure aluminum solid/liquid interfacial
energies [26]. Therefore, it seems to be reasonable that
the term b takes the value of the nearest interatomic
distance.

4. Summary
The boundary energies of symmetric [001] tilt and twist
small angle boundaries in aluminum were measured at
513 K. The results are summarized as follows :

1. The small angle boundary energies were well ex-
plained by the Read-Shockley type equation.

2. The slope S0 for (001) twist boundaries was larger
than that for (110)s tilt boundaries. This result was con-
sistently explained by the difference of the elastic con-
stants.

3. The slope S0 of (100)s tilt boundaries with the
Burgers vector of a〈100〉 was slightly smaller than
that of (110)s tilt boundaries with Burgers vector of
a/2〈110〉.

4. From result 3, it was concluded that the term b in
E0 may take a constant value independent of the Burg-
ers vector. The small S0 value for (100)s tilt boundaries
may be explained by the decomposed 45◦ a/2〈110〉 dis-
locations.

Appendix I [16]
The total energies of decomposed dislocations with
width ds is given as

E = 2Ed + E12 + γsds,

Ed = Kdb2
d

4π
ln

R

r◦
,

where Ed is the energy of a decomposed dislocation,
E12 the interaction energy between the two decomposed
dislocations and γs the stacking fault energy [18]. The
subscript d indicates decomposed dislocations. r◦ is
the core radius of dislocations. The third term, γsds , is
the the energy increase resuting from the stacking fault
energy, γs , added where decomposed dislocations are
partial dislocations.

Because the stacking fault energy in aluminum is
large, γs ∼ 200 mJm−2 [27] and ds is smaller than

the dislocation spacing, E12 may be independent of
θ . Thus, the terms E12 and γsds are included into
the A0 term in equations 1 or 3. According to the
model introducing the Read-Shockley equation [1],
the boundary energies may be described as,

γgb = Kd

4π

b2
d

b
θ (A′

0 − ln θ ) = Kd

4π
b′θ (A′

0 − ln θ ),

where b is the magnitude of the Burgers vector of non-
decomposed dislocations.
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